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IN 

Abstract-A theoretical analysis of fluid flow through internally heated porous medium under phase 
conversion and vapour superheat is presented. Non-Darcy flow regime is considered. The temperature 
distributions in the solid and fluid phases are solved simultaneously and the difference between the two in 
steady operation is found to be relatively small. Characteristic parameters for various operational 

conditions are evaluated and computed, including the rate of internal heat generation required. 

NOMENCLATURE r, axial coordinate ; 
dimensionless axial coordinate 

[ = r/fro - ri)] ; 

Reynolds number = t- ; 
(7 

A, dimensionless group 

a, 

4 

viscous coefficient ; 

dimensionless group (= Rezi); 
Re, 

T temperature; 
overall average Darcy-velocity 

( 

KPi-PO . = --- 

/4 ri-r0 Jp 

axial velocity ; 
dimensionless velocity (= ~$7). 

b, inertial coefficient ; 
G3,Cl,C3,C4, constants of integration; 

specific heat ; 
liquid to vapour specific heat ratio 

(C,,/C,” 1; 
particle diameter ; 

v, 

C P/T 
C PlW 

DP, 

Df 
Ja, 
k, 
K S./ 

1, 

t/y 

MD 

h, 

N, 

dimensionless group 
( 

= 
Cpfni/(ro-ri)l-” 

\ 
W”kss , 

; Greek symbols 

Jakob number ( = Ip,/C,, p, (To - T) ; 
thermal conductivity; 
solid to fluid thermal conductivity 
ratio [ = k, (1 - E)/(ek)] ; 

characteristic length (= b/u); 

mass flow rate ; 
dimensionless mass flow rate 

P-&M&~; ;or$l;te 

M=i\;l,=M,=ni,; 

dimensionless rate of heat generation 

4(ro - riY 

= (To- T)k,(l -c) ; 1 

/ tl, /?, y, roots of the cubic equation in 
equation (16); 

E, porosity; 

P, density ; 

PI,“, liquid to vapour density ratio 

( = PlIP”)i 
K, permeability of porous structure; 

1, latent heat of vapourization; 

8, dimensionless temperature 

[ = (z--7;)/(T,-721; 

P7 viscosity ; 
V, kinematic viscosity (=p/p); 

VI,“, liquid to vapour kinematic viscosity 
ratio ( = v,/v,). 

Subscripts 

b, end of dispenser domain; 

c, start of evaporation regime; 

; 

end of saturation regime; 
fluid (liquid or vapour) ; 

99 heater porous phase; 

1, liquid ; 
I, reservoir ; 
n, liquid in dispenser domain ; 
r, radial; 

s, solid ; 
L total ; 
u, vapour ; 

1165 

Nus, Nu/, Nusselt number in the solid and 
fluid phase, respectively; 

N&,f, solid to fluid Nusselt number ratio 

( = Nu,lNu/); 
P? pressure ; 

p, dimensionless pressure ( = E) ; 

4, rate of volumetric heat generation ; 

41, rate of heat flux ; 
QV? dimensionless heat flux rate 

1 ’ 
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11’. 

* 

0, 

entry side of dispenser; 
saturation state (superscript); 
external side of slab or cylinder. 

(A) INTRODU~ION 

RECENT interest in convective two-phase heat transfer 
in porous media arises from its extensive and 
common occurrence in many engineering applications 
and due to its particular relevance to various practical 
lields. A wide range of related problems is described 

by Moalem [l] and the corresponding references are 
also classified and named [Z]. 

Of a considerable interest is the problem associated 

with combined heat and mass transfer in internally 

energised porous medium. The principle of internal 
heat generation within saturated porous matrix may 
prove useful, particularly where specific powers are 
relatively high, in which case the use of working 
surface is unsuitable due to poor heat-transfer 
characteristics. High heat absorbing capacity of a 
coolant may be achieved under phase-conversion and 

vapor superheat. Moreover, the enormous specific 
surface of porous reactors enables high specific ratings 

even with small temperature driving forces between 
the energised solid and the working fluid. 

A steady state solution of the heat-transfer rates in 
porous media with temperature-dependent internal 
energy source has been recently presented by Moalem 
[1.2]. The concept of generating internal heat of a 
temperature dependent rate seems to be promising in 
concern to stability of operation and long life element 

due to the dynamic self control. which such an 
element possesses. 

An attempt to evaluate the heat-transfer character- 
istics of internally heated porous element in transient 
operation has been recently reported by Moalem and 
Cohen 133. The steady state solutions [1,2] yield the 
variation of the required internal heat load of the 
element and the corresponding mass flow rate of the 
working fluid with .the degree of superheat at the exit 
surface. The study into the transient part of the 
problem is aimed at the understanding of the reactor 
performance on start-up and shut-down. Both the 
steady and transient studies, consider a representative 
range of the viscous flow regime, in which case the 

heterogeneous solid&fluid system is treated as a 
continuum. Hence, average or “macroscopic” govern- 

ing equations can be reasonably applied. The assump- 
tion of equal temperatures of the solid and the 
adjacent fluid is consistent with slow flows through 
the porous medium, [4,5]. 

The overall heat-transfer performance may be 
further improved by resorting to high fluid velocities 
through the solid matrix. However, in contrast to the 
voluminous research done on slow flows, rapid flow 
through porous materials has received comparatively 
little attention until recently [6]. 

The present study deals with the phenomenon of 
fluid flow through internally heated porous medium, 
and constitutes an attempt to extend the previous 
works [I. 2] to non-Darcy flow regimes. Constant 

rate of heat generation is assumed where the solid 
particles forming the porous structure may be nuclear 
or electrically heated. Heat may be generated also due 
to the absorption of radiation. The fluid passed 
through the heated porous medium may change from 
liquid to vapor and the vapor be furthet 

superheated. 
In a fluid&solid porous reactor element an oper- 

ational instability can result at high temperature due 
to both the relationship between fluid viscosity and 
temperature and the non-uniformity of the fluid flow 
in the porous structure. This instability problem can 

be avoided if a dual layer material in the heating 
regime is used [7,8]. The inner layer (Disperser) is of 

a relatively low permeability while the outer layer is of 
a high thermal conductivity and a high permeability. 
The effect of the dispenser layer is also accounted for 
in the present analysis. 

(B) THE THEORETICAL MODEL 
AND GOVERNING EQUATIONS 

Typical porous elements of different geometry are 
sketched in Fig. l(a) and l(b). The former represents 

an internally energised porous slab of thickness L 
(= R, -RJ whiie the latter is in the form of a hollow 
porous cylinder, where the flow may be from either 
the inside or the outside. Here, the liquid is assumed 
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to flow radially outwards through the porous 
medium by an imposed total pressure drop of Pi-p,,, 
where Pi and p0 are the pressures maintained at the 
rear surface upstream and at the leading surface 
downstream, respectively. Note that in each case the 
dispenser is placed upstream as is shown in Fig. 1. 

In the pressure gradient considered here, the 
equation of motion is given by the modified Darcy’s 
law as was shown by Green and Duwez [9] : 

dp -_ = 
dr 

apfv,+bpfvf 

where the constants a( = l/~) and b are the viscous 
and the inertial. coefficients, respectively and are 
determined by the properties of the porous material 
only and depend neither on the type of fluid nor on 
the material temperature [lo]. K is the permeability 
of the porous structure and dpjdr is the radial 
pressure gradient which corresponds to a radial 
valocity u, of a single-phase fluid of density PI and 
viscosity Pr. Note that, as the coolant approaches 
the inlet surface, the pressure drop from flow 
acceleration is small compared with the drop 
through the porous material so that pi-pm, where 
p, being the reservoir pressure. Neglecting the 
transient term the equation of continuity may be 
written in general form: 

Ir”u,) = 0 n = 
O-plane 

1 -cylindrical 
(2a) 

where u, is the radial superficial velocity and p, is the 
fluid density. In the case of steady-state operation, 
equation (2a) may simply be reduced to: 

p/r”u, = Constant = (2R) 

where hit, is either the mass flux in the case.of plane 
configuration (n = 0), or the mass flow rate per unit 
length of cylinder (n = 1). Utilizing equation (2b), 
equation (1) may now be written in thefirm: 

dp av,rh/ 1 bij 1 -_ = 
dr (2x)” r”+mF 

(2c) 

Energy is generated in the medium at an arbitrary 
volumetric rate q. After a time-interval the tempera- 
ture at the outlet side reaches the boiling point of the 
liquid, and evaporation may take place within the 
medium. If the rate of heat generation is large 
enough the liquid feed is completely converted to 
saturated vapor and the saturated vapor is further 
superheated until steady-state is reached. It is 
assumed that at steady-state operation the regions of 
different phases are “seperated” by two phase-change 
“interfaces”, the first of which (at r,) denotes the 
average distance where evaporation starts and the 
second (at rd) denotes the average distance where 
complete evaporation is reached. The liquid passed 
through the heated porous medium, is firstly heated 
to saturation state in region I, changes phase from 
liquid to vapor in region II, and the vapor is further 
superheated in region III to an exit temperature T,, 
greater than the saturation temperature of the liquid 
corresponding to the pressure pO. The temperature 
and pressure at the evaporation region are the 
saturation temperature and pressure T* and p*, 
respectively, where p0 < p* <pi and T*(pi) < T*(p*) 

<T*(h). 
Referring to a physical system as shown in Fig. 1, 

the steady-state one-dimensional (in r) thermal 
energy equations for solid and fluid, respectively, are 
[ll]: 

-h,(T,-T,)+q=O (3a) 

af$ k,r”z +h,(T,-Tf) 
( 1 

-C,,p,u,e~ = 0. (3b) 

Here, s and f refer to solid and fluid, respectively, h, 
is the average volumetric heat transfer coefficient 
between the solid and fluid phases and E is the 
porosity of the matrix. 

We now define the following dimensionless variables: 

R = r/(ro-ri) P = (P-Po)/(Pi-PO) 0 = (T- T,)/(T,-- T) 

ij= --~ Kpi-po V,=? Re__Obg 
Pf ri-r0 6 vI ag 

(4) 

D = Cpf~jl/(rO--riYn 4(ro - ri Y 4ko - ri 1 
I (27r)n k, E N = (To-x)k,(l-s) Qr = (T,-- T)k,e 

Nu = k,(ro-ri)’ Nu = k,(ro-ri)’ Nu, 
S k,(l-s) ’ k,c 

Nu 

ssl = Nu/ 

Ja = IP” 
CPlp, (To- K) 

K _ k,(l--&) 
“’ - k,-c 

PI.0 = PIIP” h.a = h/V” C,,.” = C,,lC,, 
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where the subscripts 1, 11 refer to liquid and vapor, 
respectively. With reference to the above definitions, 
the continuity, motion and energy equations are 
transformed to the following dimensionless forms: 

&R”)=O 

- g = Atif/(2nR)” + Bni//(2~cR)‘~ (6) 

d= 0, n do, 
dR2+RdR-N~S(OS-OS)+N = 0 (7a) 

d=O, nR”-‘-D/dOf -- 
dR= + R” 

dR+ Nu/(O,-0,) = 0. (7b) 

The boundary conditions applicable to this problem 
are: 

R=Ri P=l 0 = 0, (8a) 

R = Rb P= P, 0 = Oh W) 

R = R, P= P; O= 9; (8~) 

R = R, P = Pd* 0 = 0: (8d) 

R=R,, P=O 0 = 00 (8e) 

where R,- Ri is the dimensionless dispenser width 
and R, and R, are the dimensionless phase-change 
“interfaces” position (see Fig. l)- to be determined. 
Note that R,, O,,, R,, R, and O,* are not a priori 
known. 0: is prescribed as a normal boiling point. 

(C) PROCEDURE OF SOLUTION: 
PLANE CONFIGURATION, n = 0 

The pressure distributions and temperature pro- 
files are now obtained by solving the momentum and 
energy equations for each region. Also, the mass flow 
rate is obtained by utilizing the pressure profiles for 

evaluating pressure gradient. The solutions proceed 
here for a plane configuration, n = 0. The cylindrical 
shape is treated in part II of the publication [12]. 

(C)l. Solution,fir the pressure distribution 
Combining the equation of continuity with the 

equation of motion, equations (5) and (6) respectively 

and integrating in the appropriate pressure limits for 
each domain, equation (8) yields the pressure 
distribution in the dispenser region, liquid and vapor 

regions of the working element: 

P, = Pi-(A,il;l,+B,lq)R (9a) 

P,= P,,-(AIMl+B,kff)(R-R,) (9b) 

P, = P;-(A, n;I,.+B, n;lf,(R-R,) (9c) 

where the subscripts n, I and I‘ refer to the dispenser 
domain, liquid and vapour region, respectively. 

Differentiating equation (9) and introducing the 
pressure gradient in the equation of motion, equa- 
tion (6) yields relationships between the mass flow 
rate and the pressure limits in each region: 

P, = Pi-(A,R;I,+B,ti;)R, (lOa) 

P: = Pb-(Alti,+BIti;)(R,-Rb) (lob) 

P, = P$-(AL,ti,+B,ti,2)(R0-Rd) (10~) 

Since a steady-state is considered here, the mass flow 
rate is the same over each region. Thus, rii, = ti+ 
= ti,(fi = hi, = &f, = ti,) and equation (10) yield: 

[A,&+4 CR,-R,)lfi 
+[B,R,+B,(R,-R,)]!@+P~ = I (lla) 

(A,ti+B,.ti2)(R0-Rd)+(Po-P:) = 0. (llb) 

Note that, the values of P, and Pj‘ are unknown but 
may be related to the mass flow rate or vice-versa, 

depends on the given parameters and the calculation 
procedure (see below). 

(C)2. Solution for the temperature projiles 
The solution of the system of differential equations 

(7a) and (7b) is obtained by the elimination of either 

the solid temperature, OS or the fluid temperature, Or, 
leading to a single fourth-order differential equation 
for the remaining dependent variable. 

Introducing n = 0 (for plane geometry) into 

equation (7b), solving for 0, and differentiating, 
yield : 

OS = “,;#- O;: + 0, 

f 

and 

o,, = DfOF - 0;" 
s ___-- + o;.. 

Nil, 

(12a) 

(I2b) 

equations (7a) and (7b) are now combined to 
eliminate the difference (O,- 0,). giving: 

O;- D,tl; + Nus,,(O,; + N) = 0. (13) 

Equation (12b) is used to eliminate 0:’ in equation 
(13). The latter becomes: 

Oy’- D,O$“- (Nuf $ Nu ) OF' s 
+DJNu,O~'=NufN (14) 

the solution of which is: 

0 

f 
= NUfP ----R+CC,e”R+C,e~JR+C3e~R+C0 

Df 
(15) 

where a, fl and y are the roots of the cubic equation: 

The temperature distribution in the solid matrix is 
obtained by solving equation (7b) for (O,, -0, ): 

0,-Q, = %!!p. 
f 

(17) 

Differentiating equation (15) and substituting 0; and 
el; into equation (17) the local solid fluid tempera- 
ture difference is obtained : 

0,-O, = N~~NI,,,,N+C,~(D,~~)~‘~ 
I 
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Due to the high value of the volumetric heat transfer 
coefficient [cr(l/D,)], the value of Nu, is relatively 
large compared to the other parameters appearing in 
equation (16). Hence, two roots of equation (16) are 
large in comparison to the third, in which case, the 
root with the lowest value characterizes the tempera- 
ture distribution while the others decay faster. 

Consequently equations (15) and (18) reduce to 

er = W,sN -R+C,ezR+C, 
D, 

(19) 

@s - Q/ = & l-Nu/,s N SC, a(Df-cr)eZR]. (20) 
f 

The total heat flux at any surface is given by: 

dT, dT/ 
qr = -k,(l-E)dr-kfEdr. (21) 

Differentiating equations (19) and (20) and introduc- 
ing the temperature gradient in the solid and fluid 
phase into equation (21) dimensionless form of the 
latter is: 

IQA = V&J + K,,, 1 
W,sN 

Df 

K,,,+K,,,+$a(Df-a) crC,ezR 
I 

(22) 
/ 

where K,,, and K,,, are k,(l -E)/(E~,) and k,/k,, 
respectively. Hence, K,,, reduce to 1 in all liquid 
regions or to k,/k, in the vapour region. 

Equations (19), (20) and (22) are valid for each 
section of the working element. For the dispenser 
section these equations simply reduce to: 

0 =C,eZR+C 

0,--0, =f[C,z(D,.-~)eO”R]/Nu, 

(23) 

(24) 

and 

IQ,1 = K,,l+K,,,+$cz(Df-ir) ctC,ezR (25) 
I 1 

since no internal heat is generated within the 
dispenser. 

(C)3. Temperature profile at entry region 
The energy equation and boundary conditions for 

the entry region are: 

k,s-rh,C,,$ = 0 

T=T at r-+-a (26b) 

T=T, at r+O WC) 

where z is the approach temperature of the liquid 
feed and T, is the temperature at the rear surface of 
the dispenser. The solution of equation (26) and the 
heat flux at R = R, in dimensionless form are: 

0, = 0, exp (D,R) (33) 

IQil = D,ew WeI 

D, = i,C,, (rO - ri)/kl. Wf ) 

(C)4. Temperature projile in the evaporation region 
The solution for the solid and fluid temperature in 

the evaporation region may be simplified by assum- 
ing that the phase-conversion of fluid in this region 
proceeds at constant temperature. Though a pres- 
sure gradient does exist through this section, the 
corresponding saturation temperature varies only 
slightly for many fluids. As an example, for water 
flowing through a bed of packed sand of length up to 
1 m the pressure drop is about 103N/m2 and the 
corresponding variation in the saturation tempera- 
ture of water (around a pressure of one atmosphere) 
is less than 2°C. 

Assuming Br 2 constant in this region equation 
(7a) may be rearranged in the form: 

d’(Q,-0,) 

dR= 
- NU,(@,-Q,)+N = 0 (27) 

the solution of which is: 

es-e, = &{~+C,exp[(Nu,)1~2(R-R,)] 
/ 

+ C, exp [(Nu,)“‘(R - R,)]} (27a) 

where 0/. for this section is the average saturation 
temperature at R, and R, corresponding pressure Pr 
and P$, respectively. 

(D) CALCULATION PROCEDURE 

The calculations of pressure and temperature 
distributions require the evaluation of the various 
constants of integration in each region. These are 
determined by combining the pressure and tempera- 
ture boundary-conditions with the energy-balances 
which are applied on each section of the element. 
The derivation of all constants and relationships 
between the characteristic parameters is rather 
lengthy and thus, only typical expressions are 
brought here. Applying the boundary conditions at 
R = Ri and R = R, while matching the heat flux at 
both sides of Ri and R, yields two relationships 
between R,, 13,, Qb as follows: 

Ob - = exp (ctR,) 
8, 

Pa) 

lQbl= W,. (28b) 

Similarly, the thermal conditions at the boundaries 
of the liquid region and a corresponding heat 
balance over R, to R, yield : 

D,QF 
R,-R, = ~ 

N Ks,, 
(29a) 

NK,, 
O,, = (K,,, + 1.0) 02 

I 

x {l.O-exp[-cc(R,--R,)]}. (29b) 

Assuming a thermodynamic equilibrium in the two- 
phase region the pressure P: at R = R, is the 
saturation vapor pressure corresponding to 0 = 0:. 
Since 0: is prescribed P: can be evaluated inde- 
pendently. The pressure P, is calculated by equation 
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(lob), utilizing Pf and (R, - Rb) from equation (29a), 
and is in turn used in equation (10a) to calculate R,. 

For the superheating region, an energy balance 
reads: 

D,.(f), - Qd*) = N(R, - Rd) K.7, (30a) 

where the corresponding saturation vapor pressure 
at R-R, is given by equation (1 lb). The cor- 

responding saturation vapor pressure expression 
with equation (30a) and (1 lb) are solved for 0: and 

R& 
Also, the overall energy balance is 

(30b) 

Introducing the computed values for 0: and R, in 
equation (30b) yields a new value for N. The average 

of the new and preceding values of N is used for 
subsequent calculations of the four regimes to 
evaluate a new N. The iterations are repeated until 

convergence is achieved. The calculation procedure 
is demonstrated in a flow chart in Appendix A of 

[131. 
Note that the local volumetric heat-transfer coef- 

ficients in the various regimes of phases are evalu- 
ated by Littman and Sliva correlations [I4]. 

(E) CALCULATED RESULTS AND DISCUSSION 

Given the standard design data (Pi, P,, K, TF) 
and based on fluid and matrix structive properties, 
the deisgner usually wishes to predict the rate of 
internal heat generation which is required to yield a 

superheated fluid at a temperature level, To. The 
calculated results are presented below as a function 
of the downstream conditions at the exit (R = R,) 
for various overall temperature drops through the 
element (AT, = To - T). 

The overall temperature variation through the 
element is represented by the Jacob number, Ja 
(=Ip,,/C,,p,All;). Low value of Ja number indicates 

either high degree of superheat at the leading surface 
downstream, or highly subcooled liquid at the rear 
surface upstream. Similarly, high Ja number in- 

dicates that the outlet or inlet temperature are close 
to the saturation conditions. 

Also are presented the dimensionless form of the 
basic variables, R,, R, and R,, which, when com- 
bined with & and N, yield the pressure and 
temperature distributions through the reactor. 

Figures 2, 3 represent the positions of the two 
phase-conversion interfaces, R, and R,, as a function 
of the superheat for various values of mass flux hi 
and at different Jacob numbers, Ja. Also included in 
the figures are the corresponding thickness of the 
dispenser-layer, R,. In general as 8,-+0 (or Bi+ - 1) 
the outcoming vapour is at saturation condition, T,* 
and hence R, -+ R,, and the main effect of the mass flux 
is on R, andR,, while R, is unaffected either by &f or 
by 0,. On the other hand, as 8,-t 1.0 (or 0, +O) the 
incoming liquid is at the saturation temperature, and 

I 

0.0 
I 

a0 as LO 
DIMENSICMESS CEGREE OF SURRHEAT. 8, 

FIG. 2. Effect ,of mass flow rate on the position of phase- 
change interfaces for various degrees of sunerheat at 

Ja = 1.27 x 10”. 

2 

04 

I 

1.0 

0.9 

4 -~ Rb- - 

oak- y---q 1 
00 05 IO 

DIMENSIONLESS DEGREE OF SWEWEAT,& 

FIG. 3. Effect of mass flow rate on the position of phase- 
change “interfaces” for various degrees of superheat at 

Ja = 6.35 x 10-3. 

hence R,-+R,. Thus, for higher superheat, the mass 
flux affects all R,, R, and R,. 

This effect is more pronounced for low mass flux 
for which the inertial contribution is neglected and 
hence the pressure gradient is lower in liquid phase 
(see Fig. 9). For high mass flux the dependence of the 
inertial resistance is of a velocity squared and hence 
its contribution is significant and the pressure 
gradient is higher for the same pressure drop, 1 -PT. 

The effect of the Jacob number on the stratifi- 
cation of the various region (Rb, R, and Rd) can be 
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evaluated by comparing Figs 2 and 3 for the different 
values of M. For convenient comparison, this is 
demonstrated in Fig. 4 for one value of the mass flux. 
As is indicated in the figure, the effect of Jacob 
number on R, or R, is significant or not, depending 
upon whether low or high degrees of superheat are 
considered, respectively. 

For a constant degree of superheat (0, = const.), 
an increase in Ja number (or a decrease in the 
overall temperature variation through the element, 
87;) yields a decrease in R, while an increase in R,. 

In other words, while the evaporation front at R, 

moves inwardly upstream, the superheating front at 
R, moves outwardly downstream. Thus, the evap- 
oration region increases as the Jacob number 
increases. 

/ 
-Rb-- , / 

I 

-- RC- I 

I 
0.0 I 

a0 a5 IO 

DIKNSKNLESS CEGREE OF SWERtEAT, 8. 

FIG. 4. Effect of Jacob number on the position of phase- 
change “interfaces” for various degrees of superheat for 

IGf = 0.54. 

Figures 2-4 also show that there is but a slight 
effect of the Jacob number and the level of superheat 
on the dispenser thickness, R,. The value of R, is 
mainly affected by the imposed mass flux through 
the element. 

Figures 5 and 6 represent the required rate of 
internal heat generation as a function of the vapour 
superheat for various values of Jacob number. At 
constant Jacob number, high superheat means 
relatively high inlet temperature of liquid feed. In 
other words, as the superheat increases, the energy 
required to preheat the incoming liquid to saturation 
decreases, while this fraction of energy which is 
required to superheat the saturated vapour at R, 
increases. However, since the heat capacity of the 
liquid phase is the larger, smaller preheating means 
smaller rates of heat generation. As is expected, this 
affect is more pronounced for higher mass flux, and a 

, 
/ 
I 
I 

00 1 

00 a5 IO 

DiMN!NM_ESS DEGREE ‘X SlRRIlEnr.& 

FIG. 5. Heat generation rate required for various mass flow 
rates at Ja = 1.27 x lo-*. 

_I Jo = 635.16’ 
“0 

; 
z IQ0 

0.0 
00 a5 IO 

MMENWNLESS CE6REE OF W=ERHEAT,6L 

FIG. 6. Heat generation rate required for various mass flow 
rates at Ja = 6.35 x 10e3. 

decrease of N with increasing B,, is noticed for the 
larger values of M. Note also that in comparing Figs. 
5 and 6, it should be kept in mind that both the 
dimensionless rate of heat generation and the Jacob 
number include the overall temperature drops th- 
rough the element, AT,. Thus, the value of N must be 
compared on a basis of constant A7; or constant Ja. 

Heat load N as a function of the mass flux M 
passes through a minimum which differs slightly for 
various Ja and B,,, Fig. 7. In the region of positive 
gradient (dN/dM), the increasing behaviour of N 
with increasing M is quite logical. In this regime of 
M values the inertial term in the pressure drop 
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FIG. 7. Variation of internal heat generation with mass 
flow rate for various operation conditions. 

expression in equation (1) is very significant and R,, 

R,, and R, interfaces position change behaves quite 
uniformly (Figs. 2-4). As the mass flux decreases, the 
inertial term is neglected in relation to the viscous 

one and R,, R, and R, interfaces position change is 
sharply pronounced. This causes the drastic decrease 
in the denominator term (R,- RP) and hence 
increasing N values for decreasing M in which the 

gradient is negative. 
Figure 8 represents the temperature 19~ (at R = Rb) 

for various operation conditions. Sufficiently low 
temperature at the entry to the working section (R 

= Rb) is essential for stable operation of the reactor. 

However, it is well known that thermal conduction 
from the solid structure as well as from the liquid 
preheating region may bring about a subcooled 

” o,y 

DIMNSIONLESS DEGREE (x SUf’EFmAT.B. 

FIG. 8. Dispenser exit temperature for various operating 
conditions. 

boiling at the entry. Appearance of vapour bubbles 
may disturb the liquid feed penetration to the heated 
section, and the element being starved of coolant in 
the neighbourhood of boiling sites, would rise in 
temperature and thus burnout of the solid results. As 
is indicated in Fig. 8, the rise of the temperature at 
the entry due to thermal conduction must be 
considered, particularly at low flow rates. 

Figure 9 demonstrates the pressure distribution 
across the various regions. As is indicated in the 

figure, the major pressure drop occurs through the 
adjoining buffer dispenser due to its low 

permeability. Also, as is expected, the pressure drop 

across the superheating region is relatively small 

compared with that across the liquid preheating 
region. 

QO a2 a4 06 0.8 I.0 

DIMENSIONLESS AXIAL COORDINATE , R 

FIG. 9. Pressure distribution within the element for various 
mass flow rates at Ja = 1.27 x lo-’ and (I,, = 0.6. 

The dimensionless temperature profiles in the 
various regions are shown in Fig. 10. Note that O1 
denotes the temperature variation in the dispenser or 
liquid regions, and 0, denotes the temperature 
variation in the superheating region (both are 
defined with reference to T so that the dimensionless 
value at the outlet is always 1.0). The liquid is 
slightly heated in the dispenser region due to 
conduction but the main increase in the temperature 
occurs in the liquid and vapour regions. The 

intersection of the temperature profiles in these 
regions with the saturation line indicates the values 
of R, and Rd, respectively. 

F. FINAL REMARKS 

The temperature profiles shown in Fig. 10 refer to 
the working fluid passing through the porous 
structure. The deviation of the temperature distri- 
bution within the solid matrix from the adjacent 
fluid is shown in Fig. 11. This deviation is lowest at 
the dispenser region where no internal heat is 
generated, and is highest at R = R,, where internal 
heat generation commences and the entering fluid 
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FIG. 10. Dimensionless temperature profiles f?,, Qc 31 _ ~_ 
various degrees of superheat at Ja = 1.27 x IO-’ and 

n;r = 0.09. 

.O 

.S 

00 02 04 06 06 
DYEN6lDNLE6s uw. CmmilylE, R 

FIG. 11. Dimensionless temperature difference 0.-B, for 
various mass flow rates at Ja = 1.27 x lo-’ and B0 = 0.6. 

(which has been only slightly heated at previous 
region due to conduction) is still rather cold. At this 
point, as liquid is being rapidly heated (see Fig. 10) 

the solid-fluid temperature difference drops until 
evaporation starts and consequently a saturated 
liquidkvapour mixture is obtained. 

At the junction of the buffer layer to the porous 
element, R,, there is a discontinuity in solid 
temperature, 8, (while the liquid temperature, 8, is 
continuous here) because of change in solid thermal 
conductivity and the heat generation within one of the 
layers. 

In general it is interesting to note that solid-fluid 
temperature difference is relatively small through all 
regions of the porous reactor. This theoretical result 

is consistent with the experimental measurements 

reported by Wong and Dybbs [5]. Consequently, 

one may comfortably speculate that the assumption 
of continuum which has been made under the 

conditions of slow flow through the porous medium 
is sufficiently reasonable for non-Darcy flow regimes. 
In other words, average or “macroscopic” energy 
equation can be applied for the heterogeneous 
solid-fluid system. It is, however, necessary to use 
effective properties of the saturated porous medium. 

This is highly rewarding in view of the complexity 
associated with a separated treatment of solid and 

fluid compared to the analysis of a continuum. 
In this physical model the operation characteris- 

tics in the element as: R,, R,, R,, 02, and N are not 
functions of heat-transfer coefficient. The latter affects 

the value of &, temperature profiles, 8,, Q,, and the 
temperature difference profile, es - Q,, 8, - 8,. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

REFERENCES 

D. Moalem Maron, Steady state heat transfer within 
porous medium with temperature dependent heat gener- 
ation, Int. J. Heat Mass Transfer 19,529 (1976). 
D. Moalem Maron, General analysis of porous reactors 
with temperature-dependent rate of heat generation; 
plane, cylindrical and spherical elements, Proceedings of 
the Sixth International Conference on Heat and Mass 
Transfer, 7-l 1 August 1978, Toronto, Canada. 
D. Moslem Maron and S. Cohen, Theoretical analysis 
of steady and transient operation of internally energised 
porous element under phase conversion and vapour 
superheat, lnt. J. Heat Mass 7kmsfer 19, 1415 (1976). 
L. Green, Gas cooling of porous heat source, J. Appl. 
Mech. 19(2) 173 (1952). 
K. F. Wong and A. Dybbs, An experimental study of 
thermal equilibrium in liquid saturated porous media, 
lnt. J. Heat Mass Transfer 19,234 (1976). 
G. S. Beavers and E. M. Sparrow, Non-Darcy flow 
through fibrous porous media, J. Appl. Mech. 36(4), 
711 (1969). 
J. R. Schuster and T. G. Lee, Application of an 
improved transpiration cooling concept to space shut- 
tle type vehicles, J. Spacecraft 9, 804 (1972). 
J. C. Koh and E. P. Del Casal, Two-phase flows in 
porous matrices for transpiration cooling, in Deuelop- 
ments in Mechanics, Edited by J. E. Cermak and J. R. 
Goodman. Colorado State University (1968). 
L. Green and P. Duwez, Fluid flow through porous 
metals, J. Appl. Mech. 73, 39 (1951). 
A. V. Luikov, L. L. Vasiliev and V. A. Mayorov, Static 
characteristics of equilibrium two-phase transpiration 
cooling system, Int. J. Heat Mass Transfer 18, 863 
(1975). 
D. W. Green, R. H. Perry and R. E. Babcock, 
Longitudinal dispersion of thermal energy through 
porous media with a flowing fluid, A.1.Ch.E. JI. 10, 645 
(1964). 
S. Cohen and D. Moalem Maron, Non-Darcy flow 
with change of phase in internally energised cylindrical 
shaped porous element, Israel J. Technol. 15,356 (1977). 
S. Cohen, Development of porous reactor, heat transfer 
in porous media with phase change, M.Sc. Thesis, Tel- 
Aviv University, Tel-Aviv, (1977). 
H. Littman and Daniel E. Silva, Gas-particle heat 
transfer coefficients in packed beds at low Reynolds 
numbers, Proceedings of the 4th International Heat 
Transfer Conference, Paris-Versailles, Paper CT 1.4 
(1970). 



I1 74 DAVID MOAI.EM MARON and SHIMON COHEN 

ECOULEMENT AVEC CHANGEMENT DE PHASE DANS UNE PLAQUE POREUSE 

RBsumb&On prtsente une &de thborique de 1’8coulement d’un fluide avec conversion de phase et 
vapeur surchauffie dans un milieu poreux chauffk de fagon interne. On consid&re un rigime d’tcoulement 
ne suivant pas la loi de Darcy. Les distributions de tempkature dans le solide et les phases du Ruide sent 
d&erminCes simultankment et on trouve que la diffirence entre eux, dans I’op&ration stationnaire, est 
relativement faible. Pour des conditions opkratoirse varikes, des paramktres caracttristiques sent &al&s 

et cnlcul~s en incluant la densiti de chaleur interne crtte et tkessaire. 

TE’JEHME C QA3OBbIM fIEPEXOAOM B nJIOCKOM rIOPMCTOM 3JIEMEHTE 
C BHYTPEHHMM TEnJIOBbIAEJIEHMEM, HE fIOfiWiHIIIOIQEECII 3AKOHY AAPCM 

AHHOTPIWIS-- npenCTaBneH TeOpeTWIeCKHfi aHam TeYeHHR ~KKIIK~CTH repes IlOpHCTblti MaTepHan 
c BH~T~~HI+~W wTo’IHHxoM -rema npii Hanwim $asoeoro nepexona B neperpesa napa. PaccMa- 
TpHBaeTCR peYuM TWeHHII, He IlOllWiHIk3WiiCK 3aKOHY AapCti. B pe3yJIbTaTe pC’ii?Ta paCnpeJte- 

newiR TeMnepaTypbr B TBEpnoM Tene w ~~KOCTH HakeHo, '(TO B CTaUHOHapHblX yCJIOBHnX 

pa3newie tdexny HHMH omocmenbH0 Heeenwxo. IlpoeeneHbl 04eHKa w paCq*T xapaKTepmTwiecKHx 

napah4eTpoB. BKJIlO'iaR HHTeHCWBHOCTb BHyTpeHHeI-0 TelUlOBbLneneHHR, ilJIll pa3JlH'lHbIX pa6ovex 

ycnosti. 

NICHT-DARCY’SCHE STRijMUNG MIT PHASENANDERUNG IN EINEM 
FLACHEN PORdSEN ELEMENT MIT INNERER ENERGIEZUFUHR 

Zusammenfassung-Es wird von einer theoretischen Studie iiber die FliissigkeitsstrGmung durch ein von 
innen beheiztes porBses Medium. bei dem Phasenlnderung und iiberhitzung des Dampfes auftritt, 
berichtet. Dabei wird der nicht-Darcy’sche StrGmungszustand betrachtet. Die Temperaturverteilungen in 
,der festen und der fliissigen Phase werden simultan bestimmt, wobei sich zeigt, da0 der Unterschied 
zwischen beiden unter stationiren Bedingungen verhAtnismlI3ig klein ist. Die fir verschiedene 
Betriebsbcdingungen charakteristischen Parameter einschlieBlich der erforderlichen inneren Wlrmeer- 

zeugung werden ermittelt und ihre Werte berechnet. 


